Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612871

RESUMO

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Assuntos
Fumar Cigarros , Doença de Crohn , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença de Crohn/genética , Fumar Cigarros/efeitos adversos , RNA Ribossômico 16S , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Glicoproteínas de Membrana
2.
Am J Respir Crit Care Med ; 207(9): 1145-1160, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883945

RESUMO

Epidemiological studies indicate that chronic obstructive pulmonary disease (COPD) is associated with the incidence of changes in intestinal health. Cigarette smoking, as one of the major causes of COPD, can have an impact on the gastrointestinal system and promotes intestinal diseases. This points to the existence of gut-lung interactions, but an overview of the underlying mechanisms of the bidirectional connection between the lungs and the gut in COPD is lacking. The interaction between the lungs and the gut can occur through circulating inflammatory cells and mediators. Moreover, gut microbiota dysbiosis, observed in both COPD and intestinal disorders, can lead to a disturbed mucosal environment, including the intestinal barrier and immune system, and hence may negatively affect both the gut and the lungs. Furthermore, systemic hypoxia and oxidative stress that occur in COPD may also be involved in intestinal dysfunction and play a role in the gut-lung axis. In this review, we summarize data from clinical research, animal models, and in vitro studies that may explain the possible mechanisms of gut-lung interactions associated with COPD. Interesting observations on the possibility of promising future add-on therapies for intestinal dysfunction in patients with COPD are highlighted.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão , Pneumopatias/complicações , Sistema Imunitário , Disbiose/complicações
3.
Nutrients ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364961

RESUMO

The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Junções Íntimas/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Células Epiteliais , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade
4.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139468

RESUMO

Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1ß, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.


Assuntos
Tecido Adiposo , Fumar Cigarros , Músculo Esquelético , Fumaça , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fumaça/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
5.
J Adv Res ; 39: 305-318, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35777914

RESUMO

INTRODUCTION: The lack of effective anti-inflammatory therapies for pneumonia represents a challenge for identifying new alternatives. Non-digestible galacto-oligosaccharides (GOS) are attractive candidates due to their anti-inflammatory and immunomodulatory effects both locally and systemically. OBJECTIVES: The anti-inflammatory properties of GOS were investigated in calves with lung infections and in calf primary bronchial epithelial cells (PBECs) and human lung epithelial cells (A549). To delineate the mechanism, the potential capacity of GOS to inhibit the NLR family pyrin domain containing 3 (NLRP3) inflammasome has been investigated. METHODS: GOS were administrated orally to calves with naturally occurring lung infections during early life or used as pretreatments in cell cultures exposed to M. haemolytica, lipopolysaccharides (LPS), leukotoxin or ATP. The cell composition, cytokine/chemokine concentrations, and M. haemolytica-LPS lgG levels in broncho-alveolar lavage fluid (BALF) and blood were investigated, while the M. haemolytica positivity in BALF and bronchial mucosa was detected in vivo. Key markers of NLRP3 inflammasome activation were measured in vivo and in vitro. RESULTS: GOS reduced M. haemolytica positivity and M. haemolytica-LPS lgG levels in calves with lung infections. Regulation of immune function and suppression of inflammatory response by GOS is related to the inhibition of NLRP3 inflammasome as observed in bronchial mucosal tissue of infected calves. The M. haemolytica-induced IL-1ß production in PBECs was lowered by GOS, which was associated with NLRP3 inflammasome inhibition caused by the decreased reactive oxygen species and ATP production. GOS inhibited leukotoxin-induced ATP production in PBECs. The LPS- and ATP-induced NLRP3 inflammasome activation in PBECs and A549 cells was suppressed by GOS. CONCLUSION: GOS exert anti-inflammatory properties by inhibiting the NLRP3 inflammasome activation in vitro and in vivo, suggesting a potential role for GOS in the prevention of lung infections.


Assuntos
Inflamassomos , Pneumonia , Trifosfato de Adenosina , Animais , Anti-Inflamatórios , Bovinos , Humanos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oligossacarídeos , Pneumonia/tratamento farmacológico
6.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L266-L280, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699290

RESUMO

Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Homeostase , Imunoglobulina A/efeitos adversos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A Secretora/farmacologia , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L251-L265, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699308

RESUMO

Brain-related comorbidities are frequently observed in chronic obstructive pulmonary disease (COPD) and are related to increased disease progression and mortality. To date, it is unclear which mechanisms are involved in the development of brain-related problems in COPD. In this study, a cigarette smoke and lipopolysaccharide (LPS) exposure murine model was used to induce COPD-like features and assess the impact on brain and behavior. Mice were daily exposed to cigarette smoke for 72 days, except for days 42, 52, and 62, on which mice were intratracheally exposed to the bacterial trigger LPS. Emphysema and pulmonary inflammation as well as behavior and brain pathology were assessed. Cigarette smoke-exposed mice showed increased alveolar enlargement and numbers of macrophages and neutrophils in bronchoalveolar lavage. Cigarette smoke exposure resulted in lower body weight, which was accompanied by lower serum leptin levels, more time spent in the inner zone of the open field, and decreased claudin-5 and occludin protein expression levels in brain microvessels. Combined cigarette smoke and LPS exposure resulted in increased locomotion and elevated microglial activation in the hippocampus of the brain. These novel findings show that systemic inflammation observed after combined cigarette smoke and LPS exposure in this COPD model is associated with increased exploratory behavior. Findings suggest that neuroinflammation is present in the brain area involved in cognitive functioning and that blood-brain barrier integrity is compromised. These findings can contribute to our knowledge about possible processes involved in brain-related comorbidities in COPD, which is valuable for optimizing and developing therapy strategies.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Encéfalo/metabolismo , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/patologia
8.
Cytokine ; 154: 155878, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405483

RESUMO

Long term particulate matter (PM) exposure has been associated with an increased incidence of respiratory diseases. Here, an in vitro model was developed to study how long term diesel exhaust particle (DEP) exposure might predispose to the development of allergic reactions. Airway epithelial (16HBE) cells were exposed to low concentrations of diesel exhaust particle (DEP) for 4 days after which they were challenged with house dust mite (HDM) extract (24 h). Compared to acute exposure (24 h), 4 days DEP exposure to 16HBE cells further reduced the transepithelial electrical resistance (TEER) and increased CXCL-8 release. DEP pre-exposure aggravated HDM-induced loss of TEER, increased tracer flux across the barrier and reduced CLDN-3 expression in these 16HBE cells. HDM-induced cytokine (IL-6, CCL-22, IL-10 and CXCL-8) release was significantly increased after DEP pre-exposure. In the current study an in vitro model with long term PM exposure was presented, which might be helpful for further understanding the interplay between long term PM exposure and allergic responses.


Assuntos
Alérgenos , Emissões de Veículos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Material Particulado/toxicidade , Permeabilidade , Emissões de Veículos/toxicidade
9.
Nutrients ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34684515

RESUMO

Emerging antimicrobial-resistant pathogens highlight the importance of developing novel interventions. Here, we investigated the anti-inflammatory properties of Fructo-oligosaccharides (FOS) in calf lung infections and in airway epithelial cells stimulated with pathogens, and/or bacterial components. During a natural exposure, 100 male calves were fed milk replacer with or without FOS for 8 weeks. Then, immune parameters and cytokine/chemokine levels in the bronchoalveolar lavage fluid (BALF) and blood were measured, and clinical scores were investigated. Calf primary bronchial epithelial cells (PBECs) and human airway epithelial cells (A549) were treated with Mannheimia haemolytica, lipopolysaccharides (LPS), and/or flagellin, with or without FOS pretreatment. Thereafter, the cytokine/chemokine levels and epithelial barrier function were examined. Relative to the control (naturally occurring lung infections), FOS-fed calves had greater macrophage numbers in BALF and lower interleukin (IL)-8, IL-6, and IL-1ß concentrations in the BALF and blood. However, FOS did not affect the clinical scores. At slaughter, FOS-fed calves had a lower severity of lung lesions compared to the control. Ex vivo, FOS prevented M. haemolytica-induced epithelial barrier dysfunction. Moreover, FOS reduced M. haemolytica- and flagellin-induced (but not LPS-induced) IL-8, TNF-α, and IL-6 release in PBECs and A549 cells. Overall, FOS had anti-inflammatory properties during the natural incidence of lung infections but had no effects on clinical symptoms.


Assuntos
Anti-Inflamatórios/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Oligossacarídeos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Pneumonia Enzoótica dos Bezerros/tratamento farmacológico , Animais , Bovinos , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Pulmão/microbiologia , Pneumonia Enzoótica dos Bezerros/microbiologia
10.
Front Cell Dev Biol ; 9: 680902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485278

RESUMO

Cigarette smoke exposure during pregnancy and lactation is associated with adverse pregnancy outcomes. Here, we investigated the effects of maternal smoke exposure on pregnancy and offspring immunity and explored whether, epidermal growth factor (EGF), an important growth-promoting factor in human colostrum and milk, might be a possible missing link in maternal smoke exposure and changes in infants' immune responses. Pregnant BALB/c mice were exposed to either cigarette smoke or air during gestation and lactation, and effects on pulmonary inflammation in dams and immune responses in offspring were examined. Maternal smoke exposure increased airway hyperresponsiveness and accumulation of inflammatory cells in the lungs of pregnant dams compared to non-pregnant dams. The E-cadherin protein expression was reduced in mammary glands of cigarette smoke-exposed pregnant dams. EGF levels were higher in mammary glands and serum of smoke-exposed pregnant dams compared to air-exposed pregnant dams. Offspring from cigarette smoke-exposed dams exhibited elevated levels of IL-17A, MCP-1, IL-22, and IL-13 in anti-CD3 stimulated spleen cell culture supernatants. EGF levels were also increased in serum of offspring from smoke-exposed dams. A positive correlation was observed between serum EGF levels and neutrophil numbers in bronchoalveolar lavage fluid of the dams. Interestingly, IL-17A, MCP-1, IL-22, IL13, and IFN-γ levels in anti-CD3 stimulated spleen cell culture supernatants of male pups also showed a positive correlation with EGF serum levels. In summary, our results reveal that maternal smoke exposure predisposes dams to exacerbated airway inflammation and offspring to exacerbated immune responses and both phenomena are associated with elevated EGF concentrations.

11.
Sci Rep ; 11(1): 13186, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162953

RESUMO

Hypoxia and hyperthermia, which can be induced by high environmental temperature or strenuous exercise, are two common stressors that affect intestinal epithelial integrity and lead to multiple clinical symptoms. In this study, we developed an in-vitro intestinal monolayer model using two human colonic epithelial cell lines, Caco-2 and HT-29, co-cultured in Transwell inserts, and investigated the effects of heat treatment and/or hypoxia on the epithelial barrier function. The monolayer with a ratio of 9:1 (Caco-2:HT-29) showed high trans-epithelial electrical resistance (TEER), low Lucifer Yellow permeability and high mucin production. Hyperthermia and/or hypoxia exposure (2 h) triggered heat shock and oxidative stress responses. HSP-70 and HSF-1 protein levels were up-regulated by hyperthermia, which were further enhanced when hyperthermia was combined with hypoxia. Increased HIF-1α protein expression and Nrf2 nuclear translocation was only caused by hypoxia. Hyperthermia and/or hypoxia exposure disrupted the established monolayer by increasing paracellular permeability, decreasing ZO-1, claudin-3 and occludin protein/mRNA expression, while enhancing E-cadherin protein expression. Tight junction protein distribution in the monolayer was also modulated by the hyperthermia and/or hypoxia exposure. In addition, transcription levels of mucin genes, MUC-2 and MUC-5AC, were increased after 2 h of hyperthermia and/or hypoxia exposure. In conclusion, this Caco-2/HT-29 cell model is valid and effective for studying detrimental effects of hyperthermia and/or hypoxia on intestinal barrier function and related heat shock and oxidative stress pathways and can be used to investigate possible interventions to reverse hyperthermia and/or hypoxia-induced intestinal epithelial injury.


Assuntos
Hipóxia Celular , Enterócitos/fisiologia , Células Caliciformes/fisiologia , Resposta ao Choque Térmico , Adenocarcinoma/patologia , Adenocarcinoma Mucinoso/patologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/patologia , Corantes , Impedância Elétrica , Regulação Neoplásica da Expressão Gênica , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Humanos , Junções Intercelulares , Isoquinolinas , Mucinas/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Estresse Oxidativo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Transcrição Gênica
12.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066693

RESUMO

Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 µg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.


Assuntos
Fumar Cigarros/efeitos adversos , Neutrófilos/patologia , Piperazinas/uso terapêutico , Animais , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-8/biossíntese , Pulmão/patologia , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/administração & dosagem , Piperazinas/química , Piperazinas/farmacologia , Pneumonia/tratamento farmacológico , Proteínas Quinases/metabolismo
13.
Front Immunol ; 12: 797376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003121

RESUMO

Increased exposure to household air pollution and ambient air pollution has become one of the world's major environmental health threats. In developing and developed countries, environmental cigarette smoke (CS) exposure is one of the main sources of household air pollution (HAP). Moreover, results from different epidemiological and experimental studies indicate that there is a strong association between HAP, specifically CS exposure, and the development of allergic diseases that often persists into later life. Here, we investigated the impact of prenatal and postnatal CS exposure on offspring susceptibility to the development of allergic airway responses by using a preclinical mouse model. Pregnant BALB/c mice were exposed to either CS or air during pregnancy and lactation and in order to induce allergic asthma the offspring were sensitized and challenged with house dust mite (HDM). Decreased lung function parameters, like dynamic compliance and pleural pressure, were observed in PBS-treated offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. Maternal CS exposure significantly increased the HDM-induced airway eosinophilia and neutrophilia in the offspring. Prenatal and postnatal CS exposure increased the frequency of Th2 cells in the lungs of HDM-treated offspring compared to offspring born to air-exposed mothers. Offspring born to CS-exposed mothers showed increased levels of IL-4, IL-5 and IL-13 in bronchoalveolar lavage fluid compared to offspring from air-exposed mothers. Ex-vivo restimulation of lung cells isolated from HDM-treated offspring born to CS-exposed mothers also resulted in increased IL-4 production. Finally, serum immunoglobulins levels of HDM-specific IgE and HDM-specific IgG1 were significantly increased upon a HDM challenge in offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. In summary, our results reveal a biological plausibility for the epidemiological studies indicating that prenatal and postnatal CS exposure increases the susceptibility of offspring to allergic immune responses.


Assuntos
Fumar Cigarros/efeitos adversos , Hipersensibilidade/imunologia , Pulmão/imunologia , Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Hipersensibilidade Respiratória/imunologia , Células Th2/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Efeitos Tardios da Exposição Pré-Natal/etiologia , Pyroglyphidae/imunologia , Risco
14.
Sci Rep ; 10(1): 13042, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747652

RESUMO

Pulmonary infection is associated with inflammation and damage to the bronchial epithelium characterized by an increase in the release of inflammatory factors and a decrease in airway barrier function. Our objective is to optimize a method for the isolation and culture of primary bronchial epithelial cells (PBECs) and to provide an ex vivo model to study mechanisms of epithelial airway inflammation. PBECs were isolated and cultured from the airways of calves in a submerged cell culture and liquid-liquid interface system. A higher yield and cell viability were obtained after stripping the epithelium from the bronchial section compared to cutting the bronchial section in smaller pieces prior to digestion. Mannheimia haemolytica and lipopolysaccharide (LPS) as stimulants increased inflammatory responses (IL-8, IL-6 and TNF-α release), possibly, by the activation of "TLR-mediated MAPKs and NF-κB" signaling. Furthermore, M. haemolytica and LPS disrupted the bronchial epithelial layer as observed by a decreased transepithelial electrical resistance and zonula occludens-1 and E-cadherin expression. An optimized isolation and culture method for calf PBECs was developed, which cooperated with animal use Replacement, Reduction and Refinement (3R's) principle, and can also contribute to the increased knowledge and development of effective therapies for other animal and humans (childhood) respiratory diseases.


Assuntos
Células Epiteliais/microbiologia , Células Epiteliais/patologia , Inflamação/microbiologia , Inflamação/patologia , Pulmão/patologia , Mannheimia haemolytica/química , Animais , Brônquios/patologia , Bovinos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos , Modelos Biológicos , Infecções por Pasteurellaceae/microbiologia
15.
Toxins (Basel) ; 11(11)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739567

RESUMO

Deoxynivalenol, T-2 toxin, and zearalenone, major Fusarium mycotoxins, contaminate human food on a global level. Exposure to these mycotoxins during pregnancy can lead to abnormalities in neonatal development. Therefore, the aim of this study was to investigate the effects of Fusarium mycotoxins on human placental epithelial cells. As an in vitro model of placental barrier, BeWo cells were exposed to different concentrations of deoxynivalenol, zearalenone or T-2 toxin. Cytotoxicity, effects on barrier integrity, paracellular permeability along with mRNA and protein expression and localization of junctional proteins after exposure were evaluated. Induction of proinflammatory responses was determined by measuring cytokine production. Increasing mycotoxin concentrations affect BeWo cell viability, and T-2 toxin was more toxic compared to other mycotoxins. Deoxynivalenol and T-2 toxin caused significant barrier disruption, altered protein and mRNA expression of junctional proteins, and induced irregular cellular distribution. Although the effects of zearalenone on barrier integrity were less prominent, all tested mycotoxins were able to induce inflammation as measured by IL-6 release. Overall, Fusarium mycotoxins disrupt the barrier of BeWo cells by altering the expression and structure of junctional proteins and trigger proinflammatory responses. These changes in placental barrier may disturb the maternal-fetal interaction and adversely affect fetal development.


Assuntos
Fusarium/metabolismo , Interleucina-6/metabolismo , Micotoxinas/toxicidade , Placenta/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Contaminação de Alimentos/análise , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez
16.
Reprod Biol ; 19(2): 133-138, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080158

RESUMO

Chemotherapy may result in ovarian atrophy, a depletion of the primordial follicle pool, diminished ovarian weight, cortical and stromal fibrosis. Imatinib mesylate is an anticancer agent that inhibits competitively several receptor tyrosine kinases (RTKs). RTKs play important roles in cell metabolism, proliferation, and apoptosis. In clinic, imatinib mesylate is also known as an anti-fibrotic medicine. In the present study, the impact of imatinib on the ovarian tissue was investigated by assessing ovarian tissue fibrosis in postnatal rat administered with or without imatinib for three days. Fibrosis in the ovarian tissue was determined by histology (Picrosirius and Masson's trichrome staining) and the protein expression of vimentin and alpha-smooth muscle actin (α-SMA). Furthermore, mRNA expression of Forkhead box transcription factor O1 and O3 (FOXO1 and FOXO3), which are markers of cell proliferation was quantified. A short-term exposure to imatinib showed to increase tissue fibrosis in ovaries. This was observed by Masson's trichrome staining. Exposure to imatinib led also to a down-regulation of vimentin protein expression and up-regulation mRNA expression of FOXO3. This may indicate a role of FOXO3 in ovarian tissue fibrosis in postnatal rat ovaries.


Assuntos
Fibrose/tratamento farmacológico , Mesilato de Imatinib/farmacologia , Doenças Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Vimentina/genética , Vimentina/metabolismo
17.
Nutr Res ; 58: 95-105, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30340819

RESUMO

The conditionally essential amino acid glycine functions as inhibitory neurotransmitter in the mammalian central nervous system. Moreover, it has been shown to act as an anti-inflammatory compound in animal models of ischemic perfusion, post-operative inflammation, periodontal disease, arthritis and obesity. Glycine acts by binding to a glycine-gated chloride channel, which has been demonstrated on neurons and immune cells, including macrophages, polymorphonuclear neutrophils and lymphocytes. The present study aims to evaluate the effect of glycine on allergy development in a cow's milk allergy model. To this end, C3H/HeOuJ female mice were supplemented with glycine by oral gavage (50 or 100 mg/mouse) 4 hours prior to sensitization with cow's milk whey protein, using cholera toxin as adjuvant. Acute allergic skin responses and anaphylaxis were assessed after intradermal allergen challenge in the ears. Mouse mast cell protease-1 (mMCP-1) and whey specific IgE levels were detected in blood collected 30 minutes after an oral allergen challenge. Jejunum was dissected and evaluated for the presence of mMCP-1-positive cells by immunohistochemistry. Intake of glycine significantly inhibited allergy development in a concentration dependent manner as indicated by a reduction in; acute allergic skin response, anaphylaxis, serum mMCP-1 and serum levels of whey specific IgE. In addition, in-vitro experiments using rat basophilic leukemia cells (RBL), showed that free glycine inhibited cytokine release but not cellular degranulation. These findings support the hypothesis that the onset of cow's milk allergy is prevented by the oral intake of the amino acid glycine. An adequate intake of glycine might be important in the improvement of tolerance against whey allergy or protection against (whey-induced) allergy development.


Assuntos
Anafilaxia/prevenção & controle , Glicina/uso terapêutico , Tolerância Imunológica/efeitos dos fármacos , Hipersensibilidade a Leite/prevenção & controle , Leite/imunologia , Dermatopatias/prevenção & controle , Proteínas do Soro do Leite/imunologia , Administração Oral , Alérgenos , Animais , Bovinos , Linhagem Celular Tumoral , Células , Quimases/sangue , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Glicina/metabolismo , Glicina/farmacologia , Imunoglobulina E/sangue , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Camundongos Endogâmicos C3H , Hipersensibilidade a Leite/complicações , Hipersensibilidade a Leite/metabolismo , Ratos , Pele/imunologia
18.
Nutr Res ; 57: 45-55, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30122195

RESUMO

Heat stress (HS) induced by exposure to high ambient temperatures or prolonged excessive physical activities is known to primarily induce deleterious effects on the intestinal integrity by disrupting junctional complexes. Considering the association of l-arginine (l-Arg) with the improvement of gut function, the hypothesis of this study was to assess whether l-Arg supplementation can prevent the intestinal barrier disruption under HS conditions and to understand whether the l-Arg-induced effects are associated with maintaining nitric oxide (NO) as the major product of l-Arg metabolism. For this study, human colorectal adenocarcinoma (Caco-2) cells grown on Transwell inserts were pretreated with different l-Arg concentrations (0.4, 1, and 4 mmol/L), and after exposure to HS, markers of intestinal barrier integrity, stress-related markers, and NO levels were determined. l-Arg deprivation markedly increased the mRNA expression of heat shock protein 70 and heme-oxygenase-1 under HS conditions. The HS-induced drop in transepithelial electrical resistance values and increase in Lucifer Yellow permeability could be prevented by 4 mmol/L l-Arg supplementation. In turn, l-Arg mitigated the downregulation and delocalization of adherens junction protein E-cadherin in HS-exposed cells. NO and inducible NO synthase levels were significantly decreased in HS-exposed cells, whereas pretreatment with 4 mmol/L l-Arg prevented this decrease. Inhibition of inducible NO synthase by the NO synthase inhibitor l-NG-nitroarginine methyl ester abrogated the effect of l-Arg on preserving intestinal integrity under HS conditions as measured by transepithelial electrical resistance, Lucifer Yellow flux, and E-cadherin expression. In summary, l-Arg supplementation protects the intestinal epithelial integrity, at least partly, by maintaining NO synthesis under HS conditions.


Assuntos
Arginina/farmacologia , Suplementos Nutricionais , Resposta ao Choque Térmico , Mucosa Intestinal/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Células CACO-2 , Caderinas/metabolismo , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos , Permeabilidade , RNA Mensageiro/metabolismo , Junções Íntimas
19.
Eur J Nutr ; 57(4): 1577-1589, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28349254

RESUMO

PURPOSE: Under conditions of high ambient temperatures and/or strenuous exercise, humans and animals experience considerable heat stress (HS) leading among others to intestinal epithelial damage through induction of cellular oxidative stress. The aim of this study was to characterize the effects of α-Lipoic Acid (ALA) on HS-induced intestinal epithelial injury using an in vitro Caco-2 cell model. METHODS: A confluent monolayer of Caco-2 cells was pre-incubated with ALA (24 h) prior to control (37 °C) or HS conditions (42 °C) for 6 or 24 h and the expression of heat shock protein 70 (HSP70), heat shock factor-1 (HSF1), and the antioxidant Nrf2 were investigated. Intestinal integrity was determined by measuring transepithelial resistance, paracellular permeability, junctional complex reassembly, and E-cadherin expression and localization. Furthermore, cell proliferation was measured in an epithelial wound healing assay and the expression of the inflammatory markers cyclooxygenase-2 (COX-2) and transforming growth Factor-ß (TGF-ß) was evaluated. RESULTS: ALA pretreatment increased the HSP70 mRNA and protein expression under HS conditions, but did not significantly modulate the HS-induced activation of HSF1. The HS-induced increase in Nrf2 gene expression as well as the Nrf2 nuclear translocation was impeded by ALA. Moreover, ALA prevented the HS-induced impairment of intestinal integrity. Cell proliferation under HS conditions was improved by ALA supplementation as demonstrated in an epithelial wound healing assay and ALA was able to affect the HS-induced inflammatory response by decreasing the COX-2 and TGF-ß mRNA expression. CONCLUSIONS: ALA supplementation could prevent the disruption of intestinal epithelial integrity by enhancing epithelial cell proliferation, and reducing the inflammatory response under HS conditions in an in vitro Caco-2 cell model.


Assuntos
Células Epiteliais/efeitos dos fármacos , Intestinos/citologia , Estresse Oxidativo , Ácido Tióctico/farmacologia , Animais , Antioxidantes , Células CACO-2 , Células Epiteliais/patologia , Humanos , Mucosa Intestinal , Intestinos/patologia
20.
Reprod Biol ; 17(1): 25-33, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040471

RESUMO

Imatinib mesylate is an anti-cancer agent that competitively inhibits several receptor tyrosine kinases (RTKs). RTKs play important roles in the regulation of primordial follicle formation, the recruitment of primordial follicles into the pool of growing follicles and maturation of the follicles. In the present study, we investigated the effects of the tyrosine kinase inhibitor imatinib on primordial follicle assembly and early folliculogenesis in postnatal rats. Female Sprague-Dawley rats were treated with either imatinib (150mg/kg) or placebo (water) on postnatal days 2-4. Bilateral ovariectomy was performed on postnatal day 2 and 5. Histology, immunohistochemistry, and mRNA analysis were performed. Imatinib treatment was associated with increased density of the multi-oocyte follicles (P<0.01), oogonia (p<0.01) and germline clusters (P<0.05), decreased activation of primordial follicles, increased expression of c-Kit and AMH, and decreased protein expression of Kit-ligand and GDF9 when compared to age-matched controls. In conclusion, imatinib affects folliculogenesis in postnatal rat ovaries by delaying the cluster breakdown, follicular assembly and early activation of the primordial follicle pool.


Assuntos
Antineoplásicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Oogênese/efeitos dos fármacos , Células-Tronco de Oogônios/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Animais Recém-Nascidos , Hormônio Antimülleriano/química , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Feminino , Fator 9 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Imuno-Histoquímica , Oogônios/citologia , Oogônios/efeitos dos fármacos , Oogônios/metabolismo , Células-Tronco de Oogônios/citologia , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-kit/agonistas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fator de Células-Tronco/antagonistas & inibidores , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA